Molecular Networks in FGF Signaling: Flotillin-1 and Cbl-Associated Protein Compete for the Binding to Fibroblast Growth Factor Receptor Substrate 2
نویسندگان
چکیده
Fibroblast growth factor receptor substrate 2 (FRS2α) is a signaling adaptor protein that regulates downstream signaling of many receptor tyrosine kinases. During signal transduction, FRS2 can be both tyrosine and threonine phosphorylated and forms signaling complexes with other adaptor proteins and tyrosine phosphatases. We have here identified flotillin-1 and the cbl-associated protein/ponsin (CAP) as novel interaction partners of FRS2. Flotillin-1 binds to the phosphotyrosine binding domain (PTB) of FRS2 and competes for the binding with the fibroblast growth factor receptor. Flotillin-1 knockdown results in increased Tyr phosphorylation of FRS2, in line with the inhibition of ERK activity in the absence of flotillin-1. CAP directly interacts with FRS2 by means of its sorbin homology (SoHo) domain, which has previously been shown to interact with flotillin-1. In addition, the third SH3 domain in CAP binds to FRS2. Due to the overlapping binding domains, CAP and flotillin-1 appear to compete for the binding to FRS2. Thus, our results reveal a novel signaling network containing FRS2, CAP and flotillin-1, whose successive interactions are most likely required to regulate receptor tyrosine kinase signaling, especially the mitogen activated protein kinase pathway.
منابع مشابه
Tyrosine phosphorylation of Sprouty proteins regulates their ability to inhibit growth factor signaling: a dual feedback loop.
Sprouty proteins are recently identified receptor tyrosine kinase (RTK) inhibitors potentially involved in many developmental processes. Here, we report that Sprouty proteins become tyrosine phosphorylated after growth factor treatment. We identified Tyr55 as a key residue for Sprouty2 phosphorylation and showed that phosphorylation was required for Sprouty2 to inhibit RTK signaling, because a ...
متن کاملRole of SHP-2 in fibroblast growth factor receptor-mediated suppression of myogenesis in C2C12 myoblasts.
Ligand activation of the fibroblast growth factor receptor (FGFR) represses myogenesis and promotes activation of extracellular signal-regulated kinases 1 and 2 (Erks). The precise mechanism through which the FGFR transmits both of these signals in myoblasts remains unclear. The SH2 domain-containing protein tyrosine phosphatase, SHP-2, has been shown to participate in the regulation of FGFR si...
متن کاملhSpry2 Is Targeted to the Ubiquitin-Dependent Proteasome Pathway by c-Cbl
Sprouty was originally identified in a genetic screen in Drosophila as an antagonist of fibroblast (FGF) and epidermal growth factor (EGF) signaling. Subsequently, four vertebrate homologs were discovered; among these, the human homolog Sprouty 2 (hSpry2) contains the highest degree of sequence homology to the Drosophila protein. It has been shown that hSpry2 interacts directly with c-Cbl, an E...
متن کاملStructural basis for activation of fibroblast growth factor signaling by sucrose octasulfate.
Sucrose octasulfate (SOS) is believed to stimulate fibroblast growth factor (FGF) signaling by binding and stabilizing FGFs. In this report, we show that SOS induces FGF-dependent dimerization of FGF receptors (FGFRs). The crystal structure of the dimeric FGF2-FGFR1-SOS complex at 2.6-A resolution reveals a symmetric assemblage of two 1:1:1 FGF2-FGFR1-SOS ternary complexes. Within each ternary ...
متن کاملLow-molecular-weight protein tyrosine phosphatase is a positive component of the fibroblast growth factor receptor signaling pathway.
Low-molecular-weight protein tyrosine phosphatase (LMW-PTP) has been implicated in the regulation of cell growth and actin rearrangement mediated by several receptor tyrosine kinases, including platelet-derived growth factor and epidermal growth factor. Here we identify the Xenopus laevis homolog of LMW-PTP1 (XLPTP1) as an additional positive regulator in the fibroblast growth factor (FGF) sign...
متن کامل